3.9.18 \(\int (b \cos (c+d x))^{5/2} (A+B \cos (c+d x)) \sec ^5(c+d x) \, dx\) [818]

3.9.18.1 Optimal result
3.9.18.2 Mathematica [A] (verified)
3.9.18.3 Rubi [A] (verified)
3.9.18.4 Maple [B] (verified)
3.9.18.5 Fricas [C] (verification not implemented)
3.9.18.6 Sympy [F(-1)]
3.9.18.7 Maxima [F]
3.9.18.8 Giac [F]
3.9.18.9 Mupad [F(-1)]

3.9.18.1 Optimal result

Integrand size = 31, antiderivative size = 143 \[ \int (b \cos (c+d x))^{5/2} (A+B \cos (c+d x)) \sec ^5(c+d x) \, dx=-\frac {2 b^2 B \sqrt {b \cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d \sqrt {\cos (c+d x)}}+\frac {2 A b^3 \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{3 d \sqrt {b \cos (c+d x)}}+\frac {2 A b^4 \sin (c+d x)}{3 d (b \cos (c+d x))^{3/2}}+\frac {2 b^3 B \sin (c+d x)}{d \sqrt {b \cos (c+d x)}} \]

output
2/3*A*b^4*sin(d*x+c)/d/(b*cos(d*x+c))^(3/2)+2*b^3*B*sin(d*x+c)/d/(b*cos(d* 
x+c))^(1/2)+2/3*A*b^3*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*Elli 
pticF(sin(1/2*d*x+1/2*c),2^(1/2))*cos(d*x+c)^(1/2)/d/(b*cos(d*x+c))^(1/2)- 
2*b^2*B*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2* 
d*x+1/2*c),2^(1/2))*(b*cos(d*x+c))^(1/2)/d/cos(d*x+c)^(1/2)
 
3.9.18.2 Mathematica [A] (verified)

Time = 0.38 (sec) , antiderivative size = 87, normalized size of antiderivative = 0.61 \[ \int (b \cos (c+d x))^{5/2} (A+B \cos (c+d x)) \sec ^5(c+d x) \, dx=\frac {2 b^3 \left (-3 B \sqrt {\cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )+A \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )+3 B \sin (c+d x)+A \tan (c+d x)\right )}{3 d \sqrt {b \cos (c+d x)}} \]

input
Integrate[(b*Cos[c + d*x])^(5/2)*(A + B*Cos[c + d*x])*Sec[c + d*x]^5,x]
 
output
(2*b^3*(-3*B*Sqrt[Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2] + A*Sqrt[Cos[c + 
 d*x]]*EllipticF[(c + d*x)/2, 2] + 3*B*Sin[c + d*x] + A*Tan[c + d*x]))/(3* 
d*Sqrt[b*Cos[c + d*x]])
 
3.9.18.3 Rubi [A] (verified)

Time = 0.63 (sec) , antiderivative size = 152, normalized size of antiderivative = 1.06, number of steps used = 10, number of rules used = 10, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.323, Rules used = {3042, 2030, 3227, 3042, 3116, 3042, 3121, 3042, 3119, 3120}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \sec ^5(c+d x) (b \cos (c+d x))^{5/2} (A+B \cos (c+d x)) \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\left (b \sin \left (c+d x+\frac {\pi }{2}\right )\right )^{5/2} \left (A+B \sin \left (c+d x+\frac {\pi }{2}\right )\right )}{\sin \left (c+d x+\frac {\pi }{2}\right )^5}dx\)

\(\Big \downarrow \) 2030

\(\displaystyle b^5 \int \frac {A+B \sin \left (\frac {1}{2} (2 c+\pi )+d x\right )}{\left (b \sin \left (\frac {1}{2} (2 c+\pi )+d x\right )\right )^{5/2}}dx\)

\(\Big \downarrow \) 3227

\(\displaystyle b^5 \left (A \int \frac {1}{(b \cos (c+d x))^{5/2}}dx+\frac {B \int \frac {1}{(b \cos (c+d x))^{3/2}}dx}{b}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle b^5 \left (A \int \frac {1}{\left (b \sin \left (c+d x+\frac {\pi }{2}\right )\right )^{5/2}}dx+\frac {B \int \frac {1}{\left (b \sin \left (c+d x+\frac {\pi }{2}\right )\right )^{3/2}}dx}{b}\right )\)

\(\Big \downarrow \) 3116

\(\displaystyle b^5 \left (A \left (\frac {\int \frac {1}{\sqrt {b \cos (c+d x)}}dx}{3 b^2}+\frac {2 \sin (c+d x)}{3 b d (b \cos (c+d x))^{3/2}}\right )+\frac {B \left (\frac {2 \sin (c+d x)}{b d \sqrt {b \cos (c+d x)}}-\frac {\int \sqrt {b \cos (c+d x)}dx}{b^2}\right )}{b}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle b^5 \left (A \left (\frac {\int \frac {1}{\sqrt {b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{3 b^2}+\frac {2 \sin (c+d x)}{3 b d (b \cos (c+d x))^{3/2}}\right )+\frac {B \left (\frac {2 \sin (c+d x)}{b d \sqrt {b \cos (c+d x)}}-\frac {\int \sqrt {b \sin \left (c+d x+\frac {\pi }{2}\right )}dx}{b^2}\right )}{b}\right )\)

\(\Big \downarrow \) 3121

\(\displaystyle b^5 \left (A \left (\frac {\sqrt {\cos (c+d x)} \int \frac {1}{\sqrt {\cos (c+d x)}}dx}{3 b^2 \sqrt {b \cos (c+d x)}}+\frac {2 \sin (c+d x)}{3 b d (b \cos (c+d x))^{3/2}}\right )+\frac {B \left (\frac {2 \sin (c+d x)}{b d \sqrt {b \cos (c+d x)}}-\frac {\sqrt {b \cos (c+d x)} \int \sqrt {\cos (c+d x)}dx}{b^2 \sqrt {\cos (c+d x)}}\right )}{b}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle b^5 \left (A \left (\frac {\sqrt {\cos (c+d x)} \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{3 b^2 \sqrt {b \cos (c+d x)}}+\frac {2 \sin (c+d x)}{3 b d (b \cos (c+d x))^{3/2}}\right )+\frac {B \left (\frac {2 \sin (c+d x)}{b d \sqrt {b \cos (c+d x)}}-\frac {\sqrt {b \cos (c+d x)} \int \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}dx}{b^2 \sqrt {\cos (c+d x)}}\right )}{b}\right )\)

\(\Big \downarrow \) 3119

\(\displaystyle b^5 \left (A \left (\frac {\sqrt {\cos (c+d x)} \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{3 b^2 \sqrt {b \cos (c+d x)}}+\frac {2 \sin (c+d x)}{3 b d (b \cos (c+d x))^{3/2}}\right )+\frac {B \left (\frac {2 \sin (c+d x)}{b d \sqrt {b \cos (c+d x)}}-\frac {2 E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {b \cos (c+d x)}}{b^2 d \sqrt {\cos (c+d x)}}\right )}{b}\right )\)

\(\Big \downarrow \) 3120

\(\displaystyle b^5 \left (A \left (\frac {2 \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{3 b^2 d \sqrt {b \cos (c+d x)}}+\frac {2 \sin (c+d x)}{3 b d (b \cos (c+d x))^{3/2}}\right )+\frac {B \left (\frac {2 \sin (c+d x)}{b d \sqrt {b \cos (c+d x)}}-\frac {2 E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {b \cos (c+d x)}}{b^2 d \sqrt {\cos (c+d x)}}\right )}{b}\right )\)

input
Int[(b*Cos[c + d*x])^(5/2)*(A + B*Cos[c + d*x])*Sec[c + d*x]^5,x]
 
output
b^5*(A*((2*Sqrt[Cos[c + d*x]]*EllipticF[(c + d*x)/2, 2])/(3*b^2*d*Sqrt[b*C 
os[c + d*x]]) + (2*Sin[c + d*x])/(3*b*d*(b*Cos[c + d*x])^(3/2))) + (B*((-2 
*Sqrt[b*Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2])/(b^2*d*Sqrt[Cos[c + d*x]] 
) + (2*Sin[c + d*x])/(b*d*Sqrt[b*Cos[c + d*x]])))/b)
 

3.9.18.3.1 Defintions of rubi rules used

rule 2030
Int[(Fx_.)*(v_)^(m_.)*((b_)*(v_))^(n_), x_Symbol] :> Simp[1/b^m   Int[(b*v) 
^(m + n)*Fx, x], x] /; FreeQ[{b, n}, x] && IntegerQ[m]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3116
Int[((b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[Cos[c + d*x]*(( 
b*Sin[c + d*x])^(n + 1)/(b*d*(n + 1))), x] + Simp[(n + 2)/(b^2*(n + 1))   I 
nt[(b*Sin[c + d*x])^(n + 2), x], x] /; FreeQ[{b, c, d}, x] && LtQ[n, -1] && 
 IntegerQ[2*n]
 

rule 3119
Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)* 
(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3120
Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2 
)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3121
Int[((b_)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[(b*Sin[c + d*x]) 
^n/Sin[c + d*x]^n   Int[Sin[c + d*x]^n, x], x] /; FreeQ[{b, c, d}, x] && Lt 
Q[-1, n, 1] && IntegerQ[2*n]
 

rule 3227
Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x 
_)]), x_Symbol] :> Simp[c   Int[(b*Sin[e + f*x])^m, x], x] + Simp[d/b   Int 
[(b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{b, c, d, e, f, m}, x]
 
3.9.18.4 Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(405\) vs. \(2(179)=358\).

Time = 2.43 (sec) , antiderivative size = 406, normalized size of antiderivative = 2.84

\[\frac {2 \sqrt {-\left (-2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+1\right ) b \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, b^{2} \left (2 A \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, F\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-12 B \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+6 B \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, E\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+2 A \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-A \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, F\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )+6 B \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-3 B \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, E\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right ) \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) b +b \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}}{3 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{3} \left (4 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-4 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+1\right ) \sqrt {\left (2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1\right ) b}\, d}\]

input
int((cos(d*x+c)*b)^(5/2)*(A+B*cos(d*x+c))*sec(d*x+c)^5,x)
 
output
2/3*(-(-2*cos(1/2*d*x+1/2*c)^2+1)*b*sin(1/2*d*x+1/2*c)^2)^(1/2)*b^2/sin(1/ 
2*d*x+1/2*c)^3/(4*sin(1/2*d*x+1/2*c)^4-4*sin(1/2*d*x+1/2*c)^2+1)*(2*A*(sin 
(1/2*d*x+1/2*c)^2)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))*(2*sin(1/2* 
d*x+1/2*c)^2-1)^(1/2)*sin(1/2*d*x+1/2*c)^2-12*B*cos(1/2*d*x+1/2*c)*sin(1/2 
*d*x+1/2*c)^4+6*B*(sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c 
),2^(1/2))*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*sin(1/2*d*x+1/2*c)^2+2*A*cos(1 
/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^2-A*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1 
/2*d*x+1/2*c)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))+6*B*cos(1/2 
*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^2-3*B*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1 
/2*d*x+1/2*c)^2-1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2)))*(-2*sin(1/ 
2*d*x+1/2*c)^4*b+b*sin(1/2*d*x+1/2*c)^2)^(1/2)/((2*cos(1/2*d*x+1/2*c)^2-1) 
*b)^(1/2)/d
 
3.9.18.5 Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.12 (sec) , antiderivative size = 196, normalized size of antiderivative = 1.37 \[ \int (b \cos (c+d x))^{5/2} (A+B \cos (c+d x)) \sec ^5(c+d x) \, dx=\frac {-i \, \sqrt {2} A b^{\frac {5}{2}} \cos \left (d x + c\right )^{2} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) + i \, \sqrt {2} A b^{\frac {5}{2}} \cos \left (d x + c\right )^{2} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) - 3 i \, \sqrt {2} B b^{\frac {5}{2}} \cos \left (d x + c\right )^{2} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) + 3 i \, \sqrt {2} B b^{\frac {5}{2}} \cos \left (d x + c\right )^{2} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right ) + 2 \, {\left (3 \, B b^{2} \cos \left (d x + c\right ) + A b^{2}\right )} \sqrt {b \cos \left (d x + c\right )} \sin \left (d x + c\right )}{3 \, d \cos \left (d x + c\right )^{2}} \]

input
integrate((b*cos(d*x+c))^(5/2)*(A+B*cos(d*x+c))*sec(d*x+c)^5,x, algorithm= 
"fricas")
 
output
1/3*(-I*sqrt(2)*A*b^(5/2)*cos(d*x + c)^2*weierstrassPInverse(-4, 0, cos(d* 
x + c) + I*sin(d*x + c)) + I*sqrt(2)*A*b^(5/2)*cos(d*x + c)^2*weierstrassP 
Inverse(-4, 0, cos(d*x + c) - I*sin(d*x + c)) - 3*I*sqrt(2)*B*b^(5/2)*cos( 
d*x + c)^2*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) 
+ I*sin(d*x + c))) + 3*I*sqrt(2)*B*b^(5/2)*cos(d*x + c)^2*weierstrassZeta( 
-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c))) + 2*(3*B 
*b^2*cos(d*x + c) + A*b^2)*sqrt(b*cos(d*x + c))*sin(d*x + c))/(d*cos(d*x + 
 c)^2)
 
3.9.18.6 Sympy [F(-1)]

Timed out. \[ \int (b \cos (c+d x))^{5/2} (A+B \cos (c+d x)) \sec ^5(c+d x) \, dx=\text {Timed out} \]

input
integrate((b*cos(d*x+c))**(5/2)*(A+B*cos(d*x+c))*sec(d*x+c)**5,x)
 
output
Timed out
 
3.9.18.7 Maxima [F]

\[ \int (b \cos (c+d x))^{5/2} (A+B \cos (c+d x)) \sec ^5(c+d x) \, dx=\int { {\left (B \cos \left (d x + c\right ) + A\right )} \left (b \cos \left (d x + c\right )\right )^{\frac {5}{2}} \sec \left (d x + c\right )^{5} \,d x } \]

input
integrate((b*cos(d*x+c))^(5/2)*(A+B*cos(d*x+c))*sec(d*x+c)^5,x, algorithm= 
"maxima")
 
output
integrate((B*cos(d*x + c) + A)*(b*cos(d*x + c))^(5/2)*sec(d*x + c)^5, x)
 
3.9.18.8 Giac [F]

\[ \int (b \cos (c+d x))^{5/2} (A+B \cos (c+d x)) \sec ^5(c+d x) \, dx=\int { {\left (B \cos \left (d x + c\right ) + A\right )} \left (b \cos \left (d x + c\right )\right )^{\frac {5}{2}} \sec \left (d x + c\right )^{5} \,d x } \]

input
integrate((b*cos(d*x+c))^(5/2)*(A+B*cos(d*x+c))*sec(d*x+c)^5,x, algorithm= 
"giac")
 
output
integrate((B*cos(d*x + c) + A)*(b*cos(d*x + c))^(5/2)*sec(d*x + c)^5, x)
 
3.9.18.9 Mupad [F(-1)]

Timed out. \[ \int (b \cos (c+d x))^{5/2} (A+B \cos (c+d x)) \sec ^5(c+d x) \, dx=\int \frac {{\left (b\,\cos \left (c+d\,x\right )\right )}^{5/2}\,\left (A+B\,\cos \left (c+d\,x\right )\right )}{{\cos \left (c+d\,x\right )}^5} \,d x \]

input
int(((b*cos(c + d*x))^(5/2)*(A + B*cos(c + d*x)))/cos(c + d*x)^5,x)
 
output
int(((b*cos(c + d*x))^(5/2)*(A + B*cos(c + d*x)))/cos(c + d*x)^5, x)